


-. I. Introduction

Although the first ideas for the free electron laser have been known

* since the original article by Motz 11] in 1951 and the successful experiments

by Phillips [2] in 1960, it is the recent work that has made the free electron

laser a serious candidate for a powerful new radiation source. In fact the

free electron laser has become the conceptual alternative for virtually every

radiation source from the microwave to the ultraviolet [3]. This can be

understood by examining Fig. 1, where the power vs. wavelength of high power

coherent radiation sources is plotted. These sources include gas and solid

state lasers, conventional microwave tubes and gyrotrons. The potential

operating range not only covers the entire wavelength range, but maximum power

levels are comparable with the other conventional high power coherent

radiation sources.

Existing accelerator technology together with the characteristics of the

FEL interaction mechanism divide FELs Into distinct categories [4-7]. 'These

categories are distinguished primarily by the type and characteristics of the

electron beam source.

Free electron lasers based on such beams as RF linacs, microtrons or

storage rings can be expected to operate In what is referred to as the

"Compton" regime [4-11). Such beams are generally of high energy, low current

and high quality (low emittance). The Compton regime is one in which the

interaction physics is primarily governed by single-particle effects;

For

collective or space charge effects can usually be neglected. Typically in __

this regime the radiation gain is low, thus, practical sources operating In

this regime would necessarily function as oscillators where high gain is not a'

* crucial requirement. In the absence of efficiency enhancement techniques, the

oper" ng efficiencies are generally low, (e.g., a fraction of a percent). Lty Codes
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Since the beam energy and quality is generally high, FELs in this regime can

operate in the optical regime or beyond.

Free electron lasers based on intense relativistic electron beams (IREB)

such as, pulse line accelerators (12-15] or induction linac accelerators [16-

18], operate in the "Raman" or "collective" regime [4-7,19,20]. Here

collective effects play an important role in determining such characteristics

as the radiation growth rate, interaction efficiency, etc. The FEL operating

wavelength, however, remains well-approximated by the usual expression

appropriate for the Compton regime. Numerous FEL experiments have been

performed with pulse line generated beams. These beams are produced from

plasma induced field emission diodes, and have a relatively flat voltage and

0
current pulse lasting for a few tens of nanoseconds. Typically they are in

the MeV energy range and carry kiloamperes of current. The low energy and

quality of these beams limit their operation in FELs to the millimeter

regime. Since the beam current is high, the radiation gain (or spatial growth

rate) can be large enough to make operation as an FEL amplifier possible.

There is a third operating regime which has features that are common to

both the Compton and Raman regimes. Here the wiggler field is strong enough

-i so that the ponderomotive force on the electrons completely dominates the

space charge forces and the radiation growth rate is large. We will refer to

this regime as the "High-Gain Compton" [4,5]. Free electron lasers using

storage ring generated electron beams may operate in this regime to produce x-

rays [21-23].

. II Linear Theory of the Free Electron Laser

The essential feature of the FEL mechanism Is that the electrons undergo

* axial bunching in the combined wiggler and raadtion fLeLds. In thts section
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we will discuss the details of the FEL mechanism in the linear or small sianal

regime. The nonlinear dynamics will be discussed in section III.

The physical model consists of a relativistic electron beam of arbitary

intensity entering and propagating through a static helically polarized

wiggler field. Only spatial variations along the z axis will be considered

for the electron beam, wiggler field, radiation fields and space charge

waves. Figure 2 shows the basic components of a FEL employing a linearly

polarized wiggler field. In both the linear and nonlinear analysis contained

in this paper a helically polarized wiggler field is used. Using our model we

obtain expressions for the radiation field, the perturbed charge density and

ponderomotive potential. This set of coupled equations fully describe the FEL

interaction. A dispersion relation, in the high gain regimes, is derived

which shows explicitly the coupling of the electromagnetic and space charge

waves by the wiggler field.

For cold electron beams, we find two regimes where the radiation grows

exponentially. In the collective, or Raman regime, the contribution to the

perturbed beam density (and hence radiation output) due to the self consistent

space charge potential is greater than that due to the ponderomotive

potential. In the high gain Compton regime (strong wiggler and/or tenuous

beam limit) the contribution to the perturbed beam density from the

ponderomotive wave dominates that due to the self consistent space charge

potential. This regime can be obtained by increasing the wiggler amplitude or

reducing the beam density. The interaction in the high gain Compton regime is

not a collective one as it is in the Raman regime.

We also obtain the small signal radiation gain with space charge effects

in the Low gain Compton regime. This result is obtained by taking Laplace

tranforms of the three equations for the ponderomotive potential, density
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perturbation and radiation field. The low gain Compton mechanism is a result

of constructive interference of modes rather than exponential growth of an

instability.

The helically polarized, static, periodic, magnetic wiggler is taken to

have the form

Bw(z) = Bw (cos(kwz)ex + sin (kwz)ey) ,  (1)

where B is constant, k - 2/X, and X is the wiggler wavelength. This form
W W W w

is sufficient for particles near the axis, i.e., kwrb << 1 where rb is the

beam radius. A more realistic representation can be found in Refs. 8 and 9.

The vector potential associated with this wiggler field is

A = A (eikwz e + e -ikwz e+), (2)--w w-

where Aw Bw/kw, and e.* (ex  iey )/2. Electrons streaming axially in the

presence of the wiggler field (2) and radiation field produce a driving

current which can stimulate (amplify) the imposed radiation field. The

radiation field, which we will represent by its vector potential AR(zt),

evolves according to the wave equation

223)A 4--J (3)
Sz2  c t2  = C

where i Is the ponderomotive induced transverse driving current. In a form

s..llar to the representation of the wiggler field (2) we represent the

stimuLated radtation by
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AR(Z,t)= AR(ei (z't)e+ + ei@(z't)$_), (4)

where AR is the amplitude, 1(z,t) kz-wt is the phase, k is the complex

wavenumber and w is the real frequency. The wiggler induced transverse

driving current is given by

J1 (z,t) = - lel (5nw + no y) + (nonresonant terms), (5)

where Sn is the perturbed beam density, v is the transverse velocity induced
W

by the wiggler field, no is the ambient beam density and v R is the transverse

velocity induced by the radiation field. The transverse wiggle and radiation

velocities are obtained by the relativistic force equation for the particles,

dP/dt = - lei (E + (P x B)/YmoC), (6)

where P ymov, y = (1 + P'P/mC 2)1 / 2  (1 -v.v/c) - 1/2 is the total relativ-

istic mass factor. The fields E and B are

a0 aARE(z,t) - ez ceat (7a)

B(zt) = -+ R)), (7b)

where 0 is the space charge potential associated with the perturbed density,

6n, and is given by

-- =47fe 6 n. (7 c)

az
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From (6), conservation of canonical transverse momentum, i.e.,

om - lel A /c = constant, implies that

v lel A (8a)W-YM " c -W
0

and

ZR A (8b)

Substituting (5) together with (8) into (3) yields

22

a2  1a 2  Wp 2

S 2 R 2 -w (9)
az c at2  yoc Y mc

From Eq. (9), we see that the radiation field, 4, is driven by the wiggler

field, A w, and the beam density perturbation, 'n. The perturbed beam density

must now be determined self consistently. From charge conservation, the

perturbed beam density is given by

36J
a~n I zat T 7e -z, (10)

where 5J is the perturbed axial beam current given byz

6Jz(z,t) - lel (n + nV z). (11)

In Eq. (I), 6v and v are the perturbed and unperturbed axial electron
z zo

veliciLies. Combining (10) and (II) yields ' followiag expression for the

perLurbed denstLy,
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a 6v
dn z
d- -no a" (12)

Taking the axial component of the force equation, Eq. (6), and using the
2

relation dy/dt --- lel(v.E)/m c we find that

dv (v x B)-e v (v . E) (z_-________-_- ____-- _- (13)

dt yz + - 2
a Oc

Linearizing (13) by keeping terms to first order in the radiation field yields

e -2 (zt) + +) (zt)). (14)dt YOm z az z a - t pC

In Eq. (14), the yz2 relativistic reduction in the space charge field comes
Z2

from combining the terms 30/;z and -(vzo/C)2 aO/az in Eq. (13) where

Y = (I - v2/c2 )- /2. The relativistic factors y and y are related by

2 2 1/2
Y° = YZ (1 + (eAw/mc 0) 2 / The axial force terms due to v x B/c and

v zo( ." )c 2  can be written in terms of an effective potential called the

ponderomotive potential, 0p, where

-lel A -_R -:e! A wAR i((k + kw)z-wt)
0 (z,t) = = R (15)
p 2 2 e + c.c"(

Yomoc 2ymoc

We see from Eq. (14) that the beam velocity and, hence, density is driven by

both the ponderomotive and space charge potential waves. The ponderomotive

wave in turn is proportional to the wiggler and radiation field amplitudes.

Taking the convective time derivative of both sIdes of (12) and employing (14)

yields

2 -leln [ 2 a v
d n 0 1 (z,t) + zo

2 y 0in ) 2 a z (z,t)J. (16)
dt2  07 c

/ . .• . • .%V - T : i "7



Substituting (7c) into (16) and using a 2 /2= 4rIeln we obtain

22

d26n 2 -leln v (17)z5~ 0 )o ?. (z,t).(7

o 2Tom 0 z c2 t p
YO YZ0

Equation (17) shows that the perturbed charge density is driven by the

ponderomotive potential wave. Equations (9) and (17) together with (15) form

a set of coupled relations for the radiation field and perturbed charge

density. The beam density perturbation is driven by the ponderomotive wave,

which is proportional to the radiation field. The radiation field in turn is

driven by both the ponderomotive wave and wiggler field. The coupling in

these equations, under appropriate conditions, can lead to radiation growth.

FEL Dispersion Relation

The phase of the ponderomotive wave is (k + k )z-wt. From Eq. (17) we see

w

that the perturbed density should have a similar dependence in the time

asymptotic limit, hence we write

6n(z,t) = 6n(k,w)e i((k + kw)z-wt) + c.c. (18)

Using (18) together with (15,), Eq. (17) becomes

2

(Q _V o(k+k )) 2 _
zo w 26

oz2
S2 wA (k + kw)(k + kw - (19)

2Tr 2 w w c8ryo moc
0 0

Equations (9) and (17) can be used in the high gain regime to obtain a

dispersion relation for the radiation field. In this section transient terms

8
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associated with the initial value solution of (9) and (19) will be neglected.

Substituting (18) together with the representations for A (z) and 4(z,t)

given in (2) and (4), into (9) gives

2 2 2
(k2- + 2) A R = 2 n Aw (20)

c yoc YOmoc

Eliminating 6n and AR from (19) and (20) yields the following dispersion

relation

22 2_2 2 _2 2c k 2-/ /Yo tw -vz-o(k+kw))- Wb/Yoyzj

2Wb a2 c k k , (21)

Yo w w

where v = cOw = IeIAw/(Y 0m0c) is the magnitude of the electron wiggle

velocity. In obtaining the final dispersion relation in (21) we used the

approximations k ( + 0 )y2 k >> k and w - ck to simplify the terms on the
z  z w w

right hand side of (19), i.e.,

v (i

(k + kw ) (k + k - z ) o 2kkw w 2w
C

In (21) the first term in brackets represents the uncoupled electromagnetic

mode while the second bracketed term represents the two uncoupled beam space

charge modes having an effective wavenumber k + k . The wiggler field providesw

for the coupling between the electromagnetic and space charge modes. Since we

wilt be primarily concerned with the forward travelling radiation field we can

approximate the electromagnetic mode, in (21) by

9



2_ 212_ 2 2 2 2 1!
W c k Wb /Yo ;"- 2 w(w- (c k + Wb/Yo ). (22)

Using (22) the FEL dispersion relation becomes

2

k - ( w /c - 2/Yoc 2) /2 ((k+k -W/Vz) 2  2 2

V Y Y
zo 0 z

2 2 k
'b/c 2 w2 ,f °  w " ( 2 3 )

zo

The dispersion relation in (23) may now be re-cast into the form

(k - k )(k - k )(k - k+) =- 24)
em-+

2 2b/C 2 k
where a 2 . is the coupling coeffi-ent,

zo

k ( 2 2 /Y/ ) 1/2 /c (25a)
em b o

is the eiectromagnetic mode wavenumber and

(w- vok w wb/(yZ/Vyo)J/vzo (25b)

is the wavenumber of the positive and negative ergy beam space charge modes

respectively. We can now distinguish two oper=_-ing regimes of the FEL

mechanism, often referred to as the high gain -.)collective (strong wiggler)

and Raman regimes.
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High Gain Compton Regime

In this regime the forces on the beam electrons due to the ponderomotive

wave dominates that due to the collective space charge effects. This can also

be referred to as the strong wiggler field limit or tenuous beam limit and is

a noncollective process. In this limit the dispersion relation (23) reduces

to

2 2
(k-k )(k - (w/v ,- k )I) a (26)

where the space charge term which comes about from the self consistent scalar

potential, i.e., W b/(voz z Y ) has been neglected. From the character of the

dispersion relation in (26) it is clear that this regime Involves the coupling

of an electromagnetic mode with the ponderomotive wave. The maximum spatial

growth rate occurs when ke is equal to (w - v k )/v and is given by
em zo w zo

2 /3
/ , Wb kw /

r = w [ 2w (27)

y c
0

In obtaining (27) we used the approximations, w - ck and 1 1. The
oz

dispersion relation in (26) was obtained by neglecting the space charge term,

this Implies the following inequality between the wiggler field amplitude and

beam density

2W b 1/2 (8>> 6 )! (28)

w cri1 CY1/2k 3
k w yz

AL the maximum growth rate the frequency of the electroman.neLLc wave is
2 2

- (1 + o) z Vz kw 2y " ck w, where we hive neglected w MbY compared
t +ZOk-b
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Raman Regime

The Raman regime involves a coupling between the forward travelling

electromagnetic mode and the negative energy beam space charge mode. In this

regime the beam plasma frequency is sufficiently high that the coupling

between the electromagnetic wave and the two beam waves, i.e., negative and

Positive energy modes, can be considered independently. The dispersion

relation describing the Interaction between the negative energy beam wave and

electromagnetic wave is obtained from (24). Here, the effect of the positive

energy beam mode on the coupling Is weak and therefore k - k + can be replaced

by (k_- k+) 2w b /(y zv [F)l-( in (24). The resulting dispersion relation is

(k k z )(o _ V o(9

6 (k~~kem)k )= 2w b 29

The maximum Raman growth rate occurs when k em I- and is

~b zkw 1/2 (0

W4/-y' c
0

The coupling with the positive energy beam wave is indeed weak, permitting the

replacement of k -k+ by (k_- k+) if

w <<~ 3)1 (31)

o w z

Note that (31) is the reverse inequality as In the High Gain Compton Regime

given by (28).

Another method of separating the Raman regime from the high gain Compton

regqme is that

12



W>> W 1 2 1/2, 3
p p,crit 2 w o w z

in the Raman regime, while w w in the Compton regime.
p p,crit

Low Gain Compton Regime

In this section we will simply state the low gain expression for what is

usually referred to as the Compton regime. In this limit the space charge

potential usually plays a small role. It differs from the high gain Compton

regime by the role of the initial conditions. In the previous section we took

Fourier transforms to obtain the FEL dispersion relation in (21). The Raman

and high gain Compton regimes exist in the long time asymptotic limit and

their characteristics are independent of the initial conditions. To obtain

the gain in the present regime we take Laplace transforms of Eqs. (9) and

(17). The low gain Compton regime gain with space charge effects (241 can be

shown to be given by

2 2 a22
Sw b wZ2 2( s+n 2

G(z) -kz -a(1 + k - , (32)
8 Y0c2 w DO b DO2 6

* where kb = (wb/Yzoc)/(24Yo)I/2, IG(z)<< 1, 6 - Akz/2 and Ak = k + kw - w/Vzo
2 2

In the absence of space charge effects, i.e., kb z << 1, the small signal

gain in (32) reduces to the usual expression [4-10,25]. Since the function
• 21a

D(sinO/O) /DO has a minimum value of 0.54 when 6 - 1.3, the maximum gain is

given by

2 2

G(z) a w b k z , (33)
max y W' Yo w

I

where z 2.6/Ak = 2.6/(k + k - W/V zo).
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Intrinsic Laser Efficiency and Beam Thermal Limitations

Estimates of the laser efficiency for monoenergetic injected electron

beams can be obtained using simple trapping arguments [5,261. In the FEL

mechanism electron trapping in the longitudinal wave, i.e., ponderomotive and

space charge wave, is the saturation mechanism when the injected electron beam

is monoenergetic in the longitudinal direction. The axial phase velocity of

the longitudinal wave is

Vph = w/(Re(k) + kw) ,  (34)

where Re(k) is determined from the dispersion relation. In the linear

development of the laser radiation the injected axial beam velocity is

slightly greater than the phase velocity, v = v + v wherezo Vph +A hr

v >> Av > 0 and Av depends upon the particular FEL regime underph

consideration. Since radiation growth occurs when Av > 0, the phase velocity

of the longitudinal wave must be slightly less than the initial axial electron

velocity. The radiation amplitude increases at the expense of the electron's

kinetic energy until the electrons become deeply trapped in the longitudinal

wave. At this point the radiation field reaches its maximum amplitude and the

average axial electron velocity is approximately given by vz  = Vph - Av.

sat
A,. saturation the average axial electron velocity has decreased by

approximately 2Av. The decrease in the electron beam energy can be directly

* equated to the increase in radiation energy. For highly relativistic electron

2
beans the decrease in the average electron kinetlc energy is AE 2Y 0 Yzo mVzoV

400
a:1 hence the radiation efficiency is

Ae 2n 2y nv/c. (35)

(Y Om c 
2  zo

0 0

* 14



The longitudinal waves "see" the beam as -nonoenergetic if the beam's

axial velocity spread is small compared to Av. Since the fractional beam's

axial energy spread is E /E 2 c
th o Z th /,temneegtcba

approximation requires that

Eth << (36)

0

To obtain the intrinsic efficiency, n, at the maximum growth rate, in the high

gain Compton regime we solve (26) for Re(k). We find

mbw 2/3 k

Re(k) w/v - k + - (37)
OZy 0 /ck 243 (7

Using (37) to solve for Av = v - v Eq. (35) yields the following

expression for the intrinsic efficiency in the high gain Compton regime

Y.b~ 2/3
b 2/3w •(38)

4 ry ck~

Following the same procedure, the intrinsic efficiency in the Raman regime is

wb//Yo

y ck ' (39)

and in the low gain Compton regime Is given by

= X /(2L) (40)
w

where L is Lhe inLeraction length. Table I lists the various expressions for

the spatial growth rates, or gain and the corresponding Intrinsic power

* 15

.. .*A

-° .. . ." ... .- ' -. .-.- . -.> ' , " • -" , .' .. ' - ..' . .- .'i . . -" , " " " ' - . " " ' " -



efficiencies for the various FEL operating regimes discussed. Operating t

FEL at shorter wavelengths by increasing the beam energy or decreasing the

wiggler period results in lower efficiencies and more stringent requirements

on the beam energy spread. One can attempt to compensate for this by

increasing the beam density, however this is usually associated with an

increase in beam temperature.

III. Nonlinear Theory of the Free Electron Laser

In this section the physical model is identical to the one used for the

linear treatment of the FEL, except here the wiggler field is spatially

tapered [26-281. Here again only spatial variations along the z axis will be

considered for the electron beam, wiggler, radiation and space charge fields.

The variable amplitude and period wiggler magnetic field can be expressed

in terms of the vector potential

z z
A (z) = Aw(z)cos(J kw(z')dz')e + sinUj kw(z')dz')e }, (41)o x o Y'

where the amplitude Aw(z) and wavenumber kw(z) are known and slowly varying

functions of z. The potential field in (41) is a good approximation to a

right-handed polarized helical magnetic field near the z-axls, i.e., when

kwrb << 1, where rb is the beam radius. The wiggler magnetic field associated

with (41) is given by

z z
B(z) = Bw(z){cos(J k (z')dz" + a(z)l)e + sinfJ kw(z')dz' + a(z))ey}, (42)

O O

where Bw (z) = - ((kw (z)A w(z) 2 + (3A (z)/z) 2 1/2, and a(z) =
-1

tan ( Aw(z)/az)/(kw(z)Aw(z))), are slowly varying functions of z. The

16



period of the magnetic field is X w(z) =2r/(k w(z) + Da/ z) 2,T/k w(z).

The scattered electromagnetic and electrostatic fields in terms of the vector

potential 4:(z,t) and scalar potential O(z,t) are Laken to be

* -. .(zt) A (z) Icos €(z,t) e - sin(z,t) e , (43a)

. RRx y

O'" (z't) = l(Z)COS p(Z't) + 412(z)sin p(Z,t), (43b)

Z Z
where (z,t) =J k(z')dz' - wt + 6, 0p(Z,t) = f k(z') + kw(z')Idz- - wt

are the phases and the mplitudes of the potentials, AR(z) , 4,(z) and 02(z)

and the wavenumbers k(z) and kw(z) are slowly varying functions of z. The

scattered electromagnetic field represented by Eq. (43a) is a right-handed

elliptically polarized field traveling in the positive z direction. The

frequency of the field and the phases as well as e are independent of z.

Wave Equations

The evolution of the scatlar potenta pentials are governed by the wave

equations

A (z -2 ( tz IAc -(zt) I - in (z,t), (44a)

2R R 2 ywRc'

and

a2 (zt) o4J (z,t) (44b)

z z

where J(z,L) is the driving current density. Substituting the potentials in

4 Eqs. (43) into (44) yields

0 17
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(W 2IC2 k2 (z)j A R(z) Cos(z't)

-2k (Z) -L (AR(z)kl /(z)) sin4(z,t) =- J (z't), (45a)

P(Z ,t) - D2 (z)cOs%(z't)) =W Jz(zlt),(4b

where terms proportional to a 2AR/az 2have been neglected. The coefficients of

the sialusoidal terms on the left-hand side of Eqs. (45) are slowly varying

functions of z and independent of t. The arguments of the sinusoidal terms on

the other hand are rapidiy varying function of t for z fixed. The rapidly

time-varying terms, in for example Eq. (45a), can be removed by multiplying

0 them by coso(z,t) and taking the temporal average over one wave period,
2 7r/ wI

i.e., (w/2ir) Jdt. Performing this operation on Eq. (45a) as well as
0

* similar operations on Eqs. (45b) yields

2 2 k2 27r/w
(W /C k (z)) A .R(z) - 3 J (z,t) cos (z,t)dL, ( 4 6a)

0

2k 12(z) -2-- (AR(z)kl /(z)j = - 3 JJ(z,t) sinl(z,t)dt, (46b)

0

aO (Z) 21r /w
(k(z) + k (z))) (z) +- = 4c zL io (z,t)dt, (46d)w 2az Jz t)

0

00

Noninear DrivtgCurrents

It is now necessary to obtain expressions for the transverse and axial

com~ponents of the current densities aind perform the time -Integration specified

18



in Eqs. (46). In general the non-thermal electron distr.bution function,

% ritten in terms of the electron orbits, is

f(z, nt) = IovzO z - z(t ,t))S(p - tt))

6(py - py(t O t ) ) 6Ip z - pz(tot)dt 0 (47)

where no is the uniform particle density to the left of the interaction

region, i.e., z < 0, vzo is the constant axial electron velocity for

z 0, Z(tot) is the axial position of the particle at time t which crossed

the z = 0 plane at time to and j(tot) is the momentum vector of the particle0r0

at time t which crossed the z = 0 plane at time to• Thermal effects which are

characteristic of actual electron beams can be easily included by appropriately

modifying the electron distribution function in (47). The integral over to

in Eq. (47) takes Into account the continuous flow of particles into the

interaction region. The current density associated with this electron

distribution is

-Ieln vzo j (t ,t)61t - T(t ,z]
J(z,t) M o dt (48)o [£t t))1@z(t ,)/t

2 2 2 1/2where Y() ( + ip2j/mc ) and

Z dz

T(LtZ) =t + ] ,Z.) ' (49)
0 Z

is the time it takes a particle to reach the position z if it entered the

?neaL'nregion, z 0, atietand v (tnteracton z = at time t 0  z oZ) is the axial velocity of a

particle at position z which was at z = 0 at time to.

* 19
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The quantity Dz(t ,t)/'t is the axial velrclty vz of a particle at time t0

which wa-_ at z = 0 at time to • 5Jaarly, for J(z,,) to be finite, vz should

not vanish in the interaction region. We asstume here that no particle is

slowed down to zero velocity in the laboratory frame, hence

"((_(to1't)jMo0 aZ(t P, atl p ZP(t 0 ,t) and the driving current becomes

P(to't )

J(z,t) = - elnV pz(to,t) v(t - T(toz)ldt o . (50)
0o p Ct ,t)o o

-GO z 09

Substituting the above form for J(z,t) into the right-hand side of Eqs. (46),

we obtain the self-consistent amplitudes and phases of the scattered

potentials in terms of driving currents.

Since the system of particles and fields are in the temporal steady-

state, particles which cross the z = 0 plane separated in time by 27/w will

execute identical orbits which are separated in time by 2w/w. It is,

therefore, possible to define a beam segment, "beamlet", for which all

possible steady-state orbits of the actual beam particles are represented by

the particles in the beamlet, but are displaced in time. The axial length of

the beamlet is clearly 2wv /,A). Therefore, substituting (50) into (46) yields
zo

[w /c2 _ k2(z)JA R(z)

v21r/w j.,t ,T(toZ))
--i ; t0 ~ 0o z) COS6(ZT(to01,Z)Idt o ,) (51a)

2k1/2 ( z )k 1 z)J

v 2r/w px (t ,T(t ,z)1

--- 41e 0  c U) 7 sin),tr(t ,z)ldt , (51b)
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302 ( z )  27r/w

k(z) + kw(z)jOi(z) - z - 41eln vzo C p Z,T(toz)Idto, (51c)
0

H 1(Z) 21t/w
(k(z) + kw(z) J 2(z) + - 41elnov j snp (Z,T(to,z) (51d)

w 2z 0-o - 04 z)Jdto.(5d

Notice that on the right-hand side of the above equations the single integrals

over to are from 0 to 27/w. As we will illustrate, these integrals can be

evaluated numerically by following the orbits of a relatively small number of

particles which enter the interaction region in any single time interval of

duration 2n/w.

Particle Dynamics

We now express the particle orbits, which are needed for the evaluation

of Eqs. (51) in terms of the nc- independent variables to and z. The forces

exerted on the electrons arise from the wiggle and potentials given in Eqs.

(41) and (43). We immediately note that the transverse canonical momenta of

the particles is conserved. Therefore, if both the wiggler and scattered

fields are zero as z + -- , the transverse particle momenta are given by

px(z,t) = (Aw(z) + A(z,t)) • e, (52a)xc -W

and

py(Z,t) = i-i (Aw(z) + LR(z,t)) (52b)

Yc y

Ubln Eqs. (52) the longitudinal component of the force equation can be put

into The form
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dp t - 2 [4 4A(z) 2

dL 2y(z,t)m c2 L ; A-,q

2mc

- 2y(z,t) 0 4 (z~t)], (53)

where pz(z,t) is the axial momentum and the relativistic mass factor is

2 2
y(z,t) = + l eJ 2 (Aw(z) + 4(z,t)J2 + p1/2 (54)

2 c4 -w2m 2 2
0 0

Equations (52) through (54) specify the particle dynamics in terms of the

wiggler and scattered fields. The transverse and longitudinal particle motion

is decoupled. Writing Eqs. (52) and (53) in terms of the new independent

variables z and to we find that

px(Z,T) = L - (A (Z) + ARx(ZT)) (55a)
Xc wx

py(ZT)= jSL zA ) + AR(Z,T)), (55b)

dpze 2 a 2 m 0 c 2

[;A-(Z) + -(-'-- -
J . (55c)dz = 2c pz(zt) + 7R(z' t)I

We have expressed the particle orbits in terms of the entry time t and axial

position %. Note that our definition of the momenta implies that,

px (t ,T) = px (Z,T), py (t ,T) = py(z,r), and z(to ,T) = pz (z,T). To obtain the

final set of equations for the amplitude AR(z) and wavenumber k(z) we first

combine Eqs. (51a) and (51b) with Eqs. (51c) and (51d) respectively. Using

the expressions for p~ and o given by Eqs. (55a,b) we arrive at the following

expressions
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2 2r/w

W 21c2 k 2(z)AR(Z) =- m v - t T(tZ)2c 2  0 zo

[Aw(Z)cos( (Z,T(t ,Z)) + A(z)} dt. (56a)

1k/2(z /-A~~1 2(z)1 -- 2 v -__j : t,Z

) 2c 2  0 1o

JA w(Z)sinf p (Z,T(toZ)jldto, (56b)

where we have used Eqs. (41) and (43a) for Aw (z) and AR(Z,t) and

2 1/2
Wb = (4ire2 n o/mo)1" For completeness we rewrite Eqs. (51c) and (51d) for

b~ 0 0

the scalar space charge potential

2 (z)
(k(z) + k (zlf, 1(z) az

2 2
-Cb vo moc 2n/w

2 ir lpCO54 (ZT(t 0 Z)Idto0 (57a)
C 0

*1 (z)
(k(z) + k (Z)J 2(z) +

2 2
-ob Vzo moc 2wIw

2 i T j sinftpfZ,T(tz))dto . (57b)
c o

The relevant particle dynamics Ls contained in Eq. (55b) which Is

rewritten in the form

2
dpz(tLT) )2 m0c M(zT)]

z 2 (z) + (z,T) - 2y(Z,T) T- P- z (58)c p (t T)
z 0
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wha re

12 p(to) 1/2

Y(Z,T) = [1 + I-' JA (z) + (Z,T)I 2 + ) 0 (59a)
2 4--w 22

m c M c
0 0

T(t ,z) t + J dz , (59b)
o p z(t ,t(tz)J

IA (z) + A fz,t)j2= A 2(z) + A 2(Z)i w R

+ 2Aw (z)A(z)cos( p(Z,T(t ,Z))). (59c)

The nonlinear formulation of the FEL is fully describe by Eqs. (56), through

(58). The ponderomotive potential plays a central role in axially bunching

the electron. From Fq. (58) we see that this potential is given by

¢pond ( Z T ) = 2 Aw(z)AR(Z) cos(4 (Z,T(t ,Z))I. (60)

The amplitude and phase of the scattered fields as "-ell as the axial beam

momentum all vary with a characteristic axial length ,'hlch is much longer than

the wiggler wavelength X . This fact allows for ine:<pensive numericalw

simulations to be performed in the laboratory frare7 ' -th extremely high energy

electron beams.

Coupled PenduLum and Wave Equations

AL this point our equations can be simplified anl vritten ifn a rore

conventionaL form. To this end we define the elecLron's phase, , with

respe.L to the ponderomotive potential,

24



z

wz(o, (z)z + (61)0 0

where 0 w 0 t t is the electron's phase upon ernering the interaction region

at z =0 and ' is also a function of the initial value 3/zI . The second

derivative of the electron's phase is z=O

d-y(po Z) _d dv (4 z )
d z dz (k + k) + Z

Vz2( oZ) dz
0 

(62)

Substituting (58) into (62) and assuming y>> 1, 1, >> ARI and

v w/(k + k ) c we find the following penl :1-2 equation [291

2 kd2 d j 2 kd

d 2  d(k + k) d A2

2 dz w 24 2 dz w
0

2 2

m c YI

(1 + 2 1/2
where Y= + (leIAw/moc) is the relat si-.-'c mass factor associated

with the transverse wiole motion. In the absence of space charge effects,

(63) reduces to the usual pendulum equation wi:1 a tapered wiggler [28] and

without tapering [101. Using the same assumpzio-s as used to obtain the

pendultn equation we find that

2 cos4'(y ,:
2

.2 2 _ 2z)(z) -A( 0
2c k R 2 wz) "(z,.;) (64 a)

C

2
d/2 d )- z

Z) (z)k (z) 2c Z ) (64b)
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2 2*2w bm c
(z) = 2 _Fe <cos'("oZ)> ,  6c

W

2 2

(z) - T- sin( o'Z)>, (64d)

2w
where < > = J ( - • - )do /2n represents the ensemble average over the

0

initial phases of the electrons. Equations (63) and (64) represent the full

set of nonlinear equations describing the one dimensional FEL process with

space charge effects and tapered wiggler.

Numerical results in the Raman regime

In this section we present numerical results [27] for the coupled

nonlinear FEL equations in (63) and (64). We assume that a monoenergetic

electron beam enters the interaction region at z = 0 with a uniform density.

The magnetic wiggler field given in (41) is assumed to be built up

adiabatically from z 4 0 to its initial value at z 0. In all of our

numerical simulations a small amplitude radiation field is introduced as a

perLurbatLon at z = 0 and allowed to grow spatially and self-consistently

according to the FEL equations.

We first consider the case where the magnetic wiggler parameters are

fixed, i.e., constant amplitude and period. Later we consider the case where

the wiggler period is adiabatically decreased, resulting in substantially

higher radiation efficiency.

In this example submillimeter radiation at X = 338 Vm is generated using

a 2.6 MeV electron beam. Table II lists the salient parameters for the

wiggler field electron beam and output radiation. The magnetic wiggler

amplitude 2.5 kG and the period is fixed at 2.0 cm. The 2.6 MeV (yo = 6), 5

k\ electron beam has a transverse equilibrium velocity of vw 0.078c.
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Figure 5 shows the amplitude of the vector potential of the excited

radlation, AR(z), and the spatial growth rate, r a[tnAR (z)I/az, as a function

of z. These plots are for the frequency w = 2y2  ck = 5 1012 sec-I
oz W

(y = 338 um). The long spatial region where the growth rate is fairly

constant is the linear region of the interaction. The value of the radiation

frequency in this figure has been chosen to maximize the linear growth rate.

Figure 6 shows the amplitude of the beam space charge wave and the

ponderomotive wave as a function of the interaction distance. Both wave

amplitudes are of the same order of magnitude signifying that the process is

for the most part in the Raman regime. Figure 7 shows the evolution of the

wavenumber associated with the radiation field. Since the radiation

* wavenumber is greater than '/c, the effective index of refraction in the beam

region is greater than unity. This implies that the radiation field will tend

to focus inward towards the electron beam. Figure 8 shows a comparison

*between the linear growth rate obtained from the dispersion relation in (24)

" .(solid curve) with the growth rate obtained from the linear regime of the

fully nonlinear simulations (crosses (x)). Also in this figure the

theoretical efficiency based on Eq. (35) (dashed curve) is compared with the

nonlinear results (circles (o)).

Efficiency Enhancement

The phase velocity of the total Longitudinal wave potential, i.e.,

ponderoinotive plus space charge is approximately v h wk + k
*ph w

The longitudinal wave poLential is responsible for axially bunching and

eventually trapping the electrons. If the wiggler period is held fixed, the

radiation field reaches its maxinum value when the electrons are trapped inS

the longitudinal potential wells. Just prior to the saturation of the
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radiation field, the electrons are somewhat spatially bunched and trapped near

the bottom of the wave potential. The trapped electrons at this point can be

considered, for our purpose, to form a macro-particle. By appropriately

reducing the phase velocity as a function of axial distance down the

interaction region, the kinetic energy of this macro-particle can be further

reduced and converted into wave energy. The phase velocity must be reduced in

such a way so that the inertial potential of the trapped macro-particle is

always less than the potential of the growing longitudinal wave. The phase

velocity can be reduced by decreasing the period of the magnetic pump as a

function of z. In order for the macro-particle to remain trapped, the spatial

rate of change of the wiggler period must be sufficiently slow. In principle

virtually all the kinetic energy of the macro-particle can be extracted and

converted to wave energy. However, not all the beam particles comprise the

macro-particle; some are untrapped. Converting particle kinetic energy into

radiation by varying the wave velocity is somewhat analogous to the reverse

process of particle acceleration in say an RF linac. Figure 9 illustrates the

effect on the saturated radiation amplitude using a tapered wiggler field. In

this figure the wiggler period is gradually decreased spatially at the point

where the electrons are deeply trapped. Once the electrons are deeply trapped

they are decelereated by decreasing the wiggler period [27,281. Figure 9

demonstrates that dramatic enhancements in the FEL efficiency can be achieved

in thIs way. (The parameters of Fig. 9 are different from Table II, and they

are given in Ref. [27].) There are of course other schemes for enhancing

efficlency in the FEL. These include, for example, spatially decreasing the

wiggler amplitude [26,28] and/or applying an axial accelerating force such as

a D.C. electrIc field [30,311 to the trapped electrons.
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As a concluding comment, concerning the rapid growth of the free electron

laser concept, the theory has been extended to include axial magnetic fields

[32,331 thermal effects [34], three-dimensional effects [35,361 and the

nonlinear stability of the radiation field [37]. Also a number of FEL

experiments are now underway or in the planning phase and numerous workshops

and special journal issues on the subject have appeared [7,38-42).
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Table I

The quantities used in Table I have the following definitions: v = 1/17 is

Budker's parameter, I is the beam current in kiloanperes, L is the wiggler length,

rb is the beam radius, B = Vw Ic, yoz = Y ( + Y22) 1/2 f(0) = (sin 6/0)2/91

e = (/ - vo/vph)Tw/2, T = L/voz is the electron's transit time and F is the

filling factor, i.e., beam area/radiation area. (c.g.s. units are used unless

otherwise stated)

FEL Operating Gain or Intrinsic Power
Regimes Growth Rate Efficiency

2/33~..9~
High Gain- 1 2/3 01 vC1/ / r1/ 1/ w /23

Compton 2 F rI- 0. r(
(single-particle) O w rb b

Raman 1/2 1/4 W  I v
(collective, (Try F) (V/yo) / (-y Z r

high gain) oz ryz 70 rb

Compton 2 L3  w
(single-particle, it F - (BfO)-j

low-gain) 0 rX
b w
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Table II

Raman FEL in the Subnm.llimeter Regime

(Constant Magnetic WAIggler Parameters)

Magnetic Wiggler Parameters

Wiggler Wavelength XW2.0 cm

Wiggler Amplitude BW 2.5 kG

Electron Beam Parameters

Beam Energy E0  2.6 MeV(y = 6)

Beam Current 'b 5 kA

Axial Gamma YO5.4

Beam Radius rb 0.3 cm

Wiggle Velocity 0.078
w

Self Potential Energy Spread AEIE 04.9%

Output Radiation Parameters

Radiation Wavelength X338 jim

Linear e-folding len-Lh* L =1,/r 5.3 cm
e

4 Efficiency* fl9.2%

Radiation Power* P 1.2 G14

* At the mnaximum grow~th rate.
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Figure Captions

Figure I Power vs. Wavelength

The power vs. wavelength of some representative high power

coherent radiation sources are shown. The output from recently

reported free electron laser sources are shown and the type of

electron beam source used indicated. The visible FEL's utilizing

storage ring electron beams, are at a power level below the scale

of the graph.

Figure 2 Shows a typical FEL configuration employing a linearly polarized

wiggler field

Figure 3 Dispersion diagram of the coupled beam space charge modes and

electromagnetic mode. The Raman FEL instability occurs near the

intersection between the negative energy beam mode and

electromagnetic mode.

Figure 4 Spatial growth rate and intrinsic efficiency in the Raman and high

gain Compton regimes as a functLion of the wiggle velocity/c.

Figure 5 Shows the evolution of the radiition field amplitude and the

growth rate as a function of the interaction distance.

Figure 6 Shows the spatial evolution of the beam space charge wave and

ponderomotive wave amplitude. This illustration is in tha Raman

regime.
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Figure 7 Shows the spatial evolution of the radiation wavenumber, the range

where k is constant is the linear regime. Since k > w/c the

radiation field will focus inward towards the electron beam.

Figure 8 Shows the comparison between the linear growth rate obtained from

the dispersion relation (solid curve) and that obtained from the

simulations in the linear regime (crosses (x)). Also shown is the

theoretical efficiency based on Eq. (35) (dashed curve) compared

with the nonlinear simulations (circles (o)).

Figure 9 Shows the enhancement of the radiation field and efficiency by

tapering the wiggler period.
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